tracklab.visualization package
Submodules
tracklab.visualization.detection module
- class tracklab.visualization.detection.DebugDetection(threshold=0.5)[source]
Bases:
DetectionVisualizer
- Detections are classified by colors:
Green is True Positive
Yellow is False Positive
Red is False Negative
- class tracklab.visualization.detection.DefaultDetection(print_id=True, print_confidence=False)[source]
Bases:
DetectionVisualizer
- class tracklab.visualization.detection.DetectionStats(print_stats=['state', 'hits', 'age', 'time_since_update', 'matched_with'])[source]
Bases:
DetectionVisualizer
- class tracklab.visualization.detection.EllipseDetection(print_id=True)[source]
Bases:
DetectionVisualizer
- class tracklab.visualization.detection.FullDetection[source]
Bases:
DefaultDetection
- class tracklab.visualization.detection.SimpleDetectionStats[source]
Bases:
DetectionStats
tracklab.visualization.image module
- class tracklab.visualization.image.FrameCount[source]
Bases:
ImageVisualizer
- class tracklab.visualization.image.IgnoreRegions[source]
Bases:
ImageVisualizer
tracklab.visualization.keypoints module
- class tracklab.visualization.keypoints.DefaultKeypoints(threshold=0.4, print_confidence=False)[source]
Bases:
DetectionVisualizer
- class tracklab.visualization.keypoints.FullKeypoints[source]
Bases:
DefaultKeypoints
tracklab.visualization.tracking module
- class tracklab.visualization.tracking.TrackingLine(max_length: int = 60, vertical_pos: float = 0.0)[source]
Bases:
DetectionVisualizer
tracklab.visualization.visualization_engine module
- class tracklab.visualization.visualization_engine.VisualizationEngine(visualizers: Dict[str, Visualizer], save_images: bool = False, save_videos: bool = False, video_fps: int = 25, process_n_videos: int | None = None, process_n_frames_by_video: int | None = None, **kwargs)[source]
Bases:
Callback
Visualization engine from list of visualizers.
- Parameters:
visualizers – a list of visualizer instances, which must implement draw_frame, or subclass
DetectionVisualizer
and implement draw_detection.save_images – whether to save the visualization as image files (.jpeg)
save_videos – whether to save the visualization as video files (.mp4)
process_n_videos – number of videos to visualize. Will visualize the first N videos.
process_n_frames_by_video – number of frames per video to visualize. Will visualize frames every N/n frames (not first n frames)
- on_dataset_track_end(engine: TrackingEngine)[source]
- visualize(tracker_state: TrackerState, video_id, detections, image_preds, progress=None)[source]
tracklab.visualization.visualizer module
- class tracklab.visualization.visualizer.DetectionVisualizer[source]
Bases:
Visualizer
,ABC
- class tracklab.visualization.visualizer.ImageVisualizer[source]
Bases:
Visualizer
,ABC