tracklab.wrappers.track package
Submodules
tracklab.wrappers.track.bot_sort_api module
- class tracklab.wrappers.track.bot_sort_api.BotSORT(cfg, device, **kwargs)[source]
Bases:
ImageLevelModule
- input_columns = ['bbox_ltwh', 'bbox_conf', 'category_id']
- output_columns = ['track_id', 'track_bbox_ltwh', 'track_bbox_conf']
- preprocess(image, detections: DataFrame, metadata: Series)[source]
Adapts the default input to your specific case.
- Parameters:
image – a numpy array of the current image
detections – a DataFrame containing all the detections pertaining to a single image
metadata – additional information about the image
- Returns:
input for the process function
- Return type:
preprocessed_sample
- process(batch, detections: DataFrame, metadatas: DataFrame)[source]
The main processing function. Runs on GPU.
- Parameters:
batch – The batched outputs of preprocess
detections – The previous detections.
metadatas – The previous image metadatas
- Returns:
- Either a DataFrame containing the new/updated detections
or a tuple containing detections and metadatas (in that order) The DataFrames can be either a list of Series, a list of DataFrames or a single DataFrame. The returned objects will be aggregated automatically according to the name of the Series/index of the DataFrame. It is thus mandatory here to name correctly your series or index your dataframes. The output will override the previous detections with the same name/index.
- Return type:
output
tracklab.wrappers.track.bpbreid_strong_sort_api module
- class tracklab.wrappers.track.bpbreid_strong_sort_api.BPBReIDStrongSORT(cfg, device, batch_size=None, **kwargs)[source]
Bases:
ImageLevelModule
- input_columns = ['bbox_ltwh', 'embeddings', 'visibility_scores']
- output_columns = ['track_id', 'track_bbox_kf_ltwh', 'track_bbox_pred_kf_ltwh', 'matched_with', 'costs', 'hits', 'age', 'time_since_update', 'state']
- preprocess(image, detections: DataFrame, metadata: Series)[source]
Adapts the default input to your specific case.
- Parameters:
image – a numpy array of the current image
detections – a DataFrame containing all the detections pertaining to a single image
metadata – additional information about the image
- Returns:
input for the process function
- Return type:
preprocessed_sample
- process(batch, detections: DataFrame, metadatas: DataFrame)[source]
The main processing function. Runs on GPU.
- Parameters:
batch – The batched outputs of preprocess
detections – The previous detections.
metadatas – The previous image metadatas
- Returns:
- Either a DataFrame containing the new/updated detections
or a tuple containing detections and metadatas (in that order) The DataFrames can be either a list of Series, a list of DataFrames or a single DataFrame. The returned objects will be aggregated automatically according to the name of the Series/index of the DataFrame. It is thus mandatory here to name correctly your series or index your dataframes. The output will override the previous detections with the same name/index.
- Return type:
output
tracklab.wrappers.track.byte_track_api module
- class tracklab.wrappers.track.byte_track_api.ByteTrack(cfg, device, **kwargs)[source]
Bases:
ImageLevelModule
- input_columns = ['bbox_ltwh', 'bbox_conf', 'category_id']
- output_columns = ['track_id', 'track_bbox_ltwh', 'track_bbox_conf']
- preprocess(image, detections: DataFrame, metadata: Series)[source]
Adapts the default input to your specific case.
- Parameters:
image – a numpy array of the current image
detections – a DataFrame containing all the detections pertaining to a single image
metadata – additional information about the image
- Returns:
input for the process function
- Return type:
preprocessed_sample
- process(batch, detections: DataFrame, metadatas: DataFrame)[source]
The main processing function. Runs on GPU.
- Parameters:
batch – The batched outputs of preprocess
detections – The previous detections.
metadatas – The previous image metadatas
- Returns:
- Either a DataFrame containing the new/updated detections
or a tuple containing detections and metadatas (in that order) The DataFrames can be either a list of Series, a list of DataFrames or a single DataFrame. The returned objects will be aggregated automatically according to the name of the Series/index of the DataFrame. It is thus mandatory here to name correctly your series or index your dataframes. The output will override the previous detections with the same name/index.
- Return type:
output
tracklab.wrappers.track.deep_oc_sort_api module
- class tracklab.wrappers.track.deep_oc_sort_api.DeepOCSORT(cfg, device, **kwargs)[source]
Bases:
ImageLevelModule
- input_columns = ['bbox_ltwh', 'bbox_conf', 'category_id']
- output_columns = ['track_id', 'track_bbox_ltwh', 'track_bbox_conf']
- preprocess(image, detections: DataFrame, metadata: Series)[source]
Adapts the default input to your specific case.
- Parameters:
image – a numpy array of the current image
detections – a DataFrame containing all the detections pertaining to a single image
metadata – additional information about the image
- Returns:
input for the process function
- Return type:
preprocessed_sample
- process(batch, detections: DataFrame, metadatas: DataFrame)[source]
The main processing function. Runs on GPU.
- Parameters:
batch – The batched outputs of preprocess
detections – The previous detections.
metadatas – The previous image metadatas
- Returns:
- Either a DataFrame containing the new/updated detections
or a tuple containing detections and metadatas (in that order) The DataFrames can be either a list of Series, a list of DataFrames or a single DataFrame. The returned objects will be aggregated automatically according to the name of the Series/index of the DataFrame. It is thus mandatory here to name correctly your series or index your dataframes. The output will override the previous detections with the same name/index.
- Return type:
output
tracklab.wrappers.track.oc_sort_api module
- class tracklab.wrappers.track.oc_sort_api.OCSORT(cfg, device, **kwargs)[source]
Bases:
ImageLevelModule
- input_columns = ['bbox_ltwh', 'bbox_conf', 'category_id']
- output_columns = ['track_id', 'track_bbox_ltwh', 'track_bbox_conf']
- preprocess(image, detections: DataFrame, metadata: Series)[source]
Adapts the default input to your specific case.
- Parameters:
image – a numpy array of the current image
detections – a DataFrame containing all the detections pertaining to a single image
metadata – additional information about the image
- Returns:
input for the process function
- Return type:
preprocessed_sample
- process(batch, detections: DataFrame, metadatas: DataFrame)[source]
The main processing function. Runs on GPU.
- Parameters:
batch – The batched outputs of preprocess
detections – The previous detections.
metadatas – The previous image metadatas
- Returns:
- Either a DataFrame containing the new/updated detections
or a tuple containing detections and metadatas (in that order) The DataFrames can be either a list of Series, a list of DataFrames or a single DataFrame. The returned objects will be aggregated automatically according to the name of the Series/index of the DataFrame. It is thus mandatory here to name correctly your series or index your dataframes. The output will override the previous detections with the same name/index.
- Return type:
output
tracklab.wrappers.track.strong_sort_api module
- class tracklab.wrappers.track.strong_sort_api.StrongSORT(cfg, device, **kwargs)[source]
Bases:
ImageLevelModule
- input_columns = ['bbox_ltwh', 'bbox_conf', 'category_id']
- output_columns = ['track_id', 'track_bbox_ltwh', 'track_bbox_conf']
- preprocess(image, detections: DataFrame, metadata: Series)[source]
Adapts the default input to your specific case.
- Parameters:
image – a numpy array of the current image
detections – a DataFrame containing all the detections pertaining to a single image
metadata – additional information about the image
- Returns:
input for the process function
- Return type:
preprocessed_sample
- process(batch, detections: DataFrame, metadatas: DataFrame)[source]
The main processing function. Runs on GPU.
- Parameters:
batch – The batched outputs of preprocess
detections – The previous detections.
metadatas – The previous image metadatas
- Returns:
- Either a DataFrame containing the new/updated detections
or a tuple containing detections and metadatas (in that order) The DataFrames can be either a list of Series, a list of DataFrames or a single DataFrame. The returned objects will be aggregated automatically according to the name of the Series/index of the DataFrame. It is thus mandatory here to name correctly your series or index your dataframes. The output will override the previous detections with the same name/index.
- Return type:
output