tracklab.datastruct package
Submodules
tracklab.datastruct.datapipe module
tracklab.datastruct.tracker_state module
- class tracklab.datastruct.tracker_state.TrackerState(tracking_set: TrackingSet, load_file=None, json_file=None, save_file=None, load_from_groundtruth=False, load_from_public_dets=False, compression=0, bbox_format=None, pipeline=None)[source]
Bases:
AbstractContextManager
- load()[source]
- Returns:
- True if the pickle contains the video detections,
and False otherwise.
- Return type:
bool
- on_video_loop_end(engine: TrackingEngine, video_metadata: Series, video_idx: int, detections: DataFrame, image_pred: DataFrame)[source]
tracklab.datastruct.tracking_dataset module
- class tracklab.datastruct.tracking_dataset.TrackingDataset(dataset_path: str, sets: dict[str, TrackingSet], nvid: int = -1, nframes: int = -1, vids_dict: list | None = None, *args, **kwargs)[source]
Bases:
ABC
- class tracklab.datastruct.tracking_dataset.TrackingSet(video_metadatas: ~pandas.core.frame.DataFrame, image_metadatas: ~pandas.core.frame.DataFrame, detections_gt: ~pandas.core.frame.DataFrame, image_gt: ~pandas.core.frame.DataFrame = Empty DataFrame Columns: [video_id] Index: [])[source]
Bases:
object
TrackingSet(video_metadatas: pandas.core.frame.DataFrame, image_metadatas: pandas.core.frame.DataFrame, detections_gt: pandas.core.frame.DataFrame, image_gt: pandas.core.frame.DataFrame = Empty DataFrame Columns: [video_id] Index: [])
- detections_gt: DataFrame
- image_gt: DataFrame = Empty DataFrame Columns: [video_id] Index: []
- image_metadatas: DataFrame
- video_metadatas: DataFrame